Chem 151A, Inorganic Chemistry
 Spring 2015

 Problem Set \#2

 Problem Set \#2}

DUE: FRIDAY MAY 8, 2015, 9:30 am

Chem 151A Mail Slot in PSB Mail Room (Next to PSB 238)

20 marks 1. For the following molecules, name the idealized VSEPR geometry and assign the point group: (a) $\mathrm{GeH}_{2} \mathrm{D}_{2}\left(\mathrm{D}=\right.$ deuterium); (b) AsF_{5}; (c) $\mathrm{C}_{2} \mathrm{H}_{2}$; (d) $\mathrm{SiH}_{3} \mathrm{D}$; (e) $\mathrm{SO}_{2} \mathrm{Cl}_{2}$

15 marks 2. List the symmetry elements of the following organic molecules:
(a) cyclohexane in the boat conformation; (b) cyclohexane in the chair conformation; (c) biphenyl $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, where the rings are co-planar; (d) biphenyl, where the rings are perpendicular to each other; (e) biphenyl, where the rings define an angle of 45°.

10 marks 3. Naphthalene is shown below. Give its point group, as well as that of all possible isomers of monochloronaphthalene (note: do not duplicate any of your answers! e.g.: 2-monochloronaphthalene is equivalent to 3-, 6- and 7monochloronaphthalene).

20 marks 4. Determine the point groups and vibrational mode symmetries ($\Gamma_{\text {vib }}$) for gaseous $\mathrm{BF}_{3}, \mathrm{NF}_{3}$ and CIF_{3}. Would IR and Raman spectroscopies be able to differentiate between these gases? (Hint: $N=4$ for each, so they have the same number of vibrational degrees of freedom; also, a doubly degenerate set of vibrations will appear at the same energy in a spectrum.)

10 marks 5. Describe the bonding in $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ with each of the following models: (a) valence bond theory; (b) crystal field theory.

10 marks 6. Draw out all the isomers, geometric and optical, of the following:
(a) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$; (b) $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+}$; (c) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{+}$.

15 marks 7. Use crystal field theory to discuss the relative differences in the geometry, color, molar absorptivity and magnetism of the complexes $\mathrm{NiCl}_{4}{ }^{2-}$ and $\mathrm{PtCl}_{4}{ }^{2-}$.

Total: 100 marks

