Chem 151A, Inorganic Chemistry Spring 2015 Problem Set #2

DUE: FRIDAY MAY 8, 2015, 9:30 am

Chem 151A Mail Slot in PSB Mail Room (Next to PSB 238)

- 20 marks 1. For the following molecules, name the idealized VSEPR geometry and assign the point group: (a) GeH_2D_2 (D = deuterium); (b) AsF_5 ; (c) C_2H_2 ; (d) SiH_3D ; (e) SO_2Cl_2
- 15 marks
 2. List the symmetry elements of the following organic molecules:
 (a) cyclohexane in the boat conformation; (b) cyclohexane in the chair conformation; (c) biphenyl (C₆H₅-C₆H₅), where the rings are co-planar;
 (d) biphenyl, where the rings are perpendicular to each other; (e) biphenyl, where the rings define an angle of 45°.
- 10 marks 3. Naphthalene is shown below. Give its point group, as well as that of all possible isomers of monochloronaphthalene (note: do not duplicate any of your answers! e.g.: 2-monochloronaphthalene is equivalent to 3-, 6- and 7- monochloronaphthalene).

- 20 marks 4. Determine the point groups and vibrational mode symmetries (Γ_{vib}) for gaseous BF₃, NF₃ and CIF₃. Would IR and Raman spectroscopies be able to differentiate between these gases? (Hint: N = 4 for each, so they have the same number of vibrational degrees of freedom; also, a doubly degenerate set of vibrations will appear at the same energy in a spectrum.)
- 10 marks 5. Describe the bonding in $[Ni(NH_3)_6]^{2+}$ with each of the following models: (a) valence bond theory; (b) crystal field theory.
- 10 marks 6. Draw out all the isomers, geometric and optical, of the following: (a) [Co(en)₂Cl₂]; (b) [Co(en)₂(NH₃)Cl]²⁺; (c) [Co(en)(NH₃)₂Cl₂]⁺.
- 15 marks 7. Use crystal field theory to discuss the relative differences in the geometry, color, molar absorptivity and magnetism of the complexes $NiCl_4^{2-}$ and $PtCl_4^{2-}$.

Total: 100 marks