Chem 151B
 Inorganic Chemistry II
 Spring 2018

Problem Set \#1

Due May 1st, 2018 at start of class

25 marks 1. Draw the Lewis dot diagrams for the following molecules. If applicable, include formal charges and all reasonable resonance structures. What is the molecular geometry and the general $A B_{x} E_{y}$ formula on which the structure is based? (a) $\mathrm{SO}_{3}{ }^{2-}$; (b) XeOF_{4}; (c) HONH_{2}; (d) ICl_{4}^{-}; (e) $\mathrm{SbF}_{5}{ }^{2-}$.

15 marks 2. Using Wade's Rules, predict the structures of the following clusters: (a) $\mathrm{B}_{5} \mathrm{H}_{11}$; (b) $\mathrm{C}_{4} \mathrm{~B}_{2} \mathrm{H}_{6}$; (c) $\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{5} \mathrm{Fe}(\mathrm{CO})_{3}$; (d) $\mathrm{Fe}_{4}(\mathrm{CO})_{13} \mathrm{C}$, where the carbon is in the center of the cluster; (e) $\mathrm{Fe}_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{12}$.

20 marks 3. Sketch the ${ }^{29} \mathrm{Si}$ and ${ }^{1} \mathrm{H}$ NMR spectra of gaseous monochlorosilane, $\mathrm{SiH}_{3} \mathrm{Cl}$. Indicate coupling constants and relative intensities on your sketches $\left({ }^{29} \mathrm{Si}: \mathrm{N}=4.7 \%, \mathrm{I}=1 / 2 ;{ }^{1} \mathrm{H}: \mathrm{N}\right.$ $=99.9 \%, I=1 / 2$).

15 marks 4. Account for the following observations in the ${ }^{129} \mathrm{Xe}$ NMR spectra of XeF_{4} : a 1:4:6:4:1 quintet is observed when dissolved in BrF_{5}, whereas a $1: 2: 1$ triplet is seen when dissolved in SbF_{5}, with each component further split into a doublet (${ }^{129} \mathrm{Xe}: \mathrm{N}=26 \%$, $\mathrm{I}=1 / 2 ;{ }^{19} \mathrm{~F}: \mathrm{N}=100 \%, \mathrm{I}=1 / 2$; hint: SbF_{5} is a Lewis acid).

Total: 75 marks

For practice only, will not be graded:
Consider the paramagnetic cluster compound $\mathrm{Co}_{3}(\mathrm{CO})_{9} \mathrm{~S}$, where the cobalt atoms define a triangular geometry, the chalcogenide caps the cluster, and the unpaired electron resides in an antibonding MO localized in the plane of the three cobalt atoms (Co: I = 7/2). How many EPR lines would you expect if: (i) all cobalts are equivalent; (ii) only two are equivalent; (iii) all three are non-equivalent. The sample is diluted in diamagnetic $\mathrm{FeCo}_{2}(\mathrm{CO})_{9} \mathrm{Se}$, and you do not need to give the intensity ratio.

