Chem 151B Inorganic Chemistry II Spring 2018

Problem Set #1

Due May 1st, 2018 at start of class

- 25 marks 1. Draw the Lewis dot diagrams for the following molecules. If applicable, include formal charges and all reasonable resonance structures. What is the molecular geometry and the general AB_xE_y formula on which the structure is based? (a) $SO_3^{2^-}$; (b) XeOF₄; (c) HONH₂; (d) ICl₄⁻; (e) SbF₅^{2^-}.
- 15 marks 2. Using Wade's Rules, predict the structures of the following clusters: (a) B_5H_{11} ; (b) $C_4B_2H_6$; (c) $C_2B_3H_5Fe(CO)_3$; (d) $Fe_4(CO)_{13}C$, where the carbon is in the center of the cluster; (e) $Fe_2Rh_2(CO)_{12}$.
- 20 marks 3. Sketch the ²⁹Si and ¹H NMR spectra of gaseous monochlorosilane, SiH₃Cl. Indicate coupling constants and relative intensities on your sketches (²⁹Si: N = 4.7%, I = 1/2; ¹H: N = 99.9%, I = 1/2).
- 15 marks 4. Account for the following observations in the ¹²⁹Xe NMR spectra of XeF₄: a 1:4:6:4:1 quintet is observed when dissolved in BrF₅, whereas a 1:2:1 triplet is seen when dissolved in SbF₅, with each component further split into a doublet (¹²⁹Xe: N = 26%, I = 1/2; ¹⁹F: N = 100%, $I = \frac{1}{2}$; hint: SbF₅ is a Lewis acid).

Total: 75 marks

For practice only, will not be graded:

Consider the paramagnetic cluster compound $Co_3(CO)_9S$, where the cobalt atoms define a triangular geometry, the chalcogenide caps the cluster, and the unpaired electron resides in an antibonding MO localized in the plane of the three cobalt atoms (Co: I = 7/2). How many EPR lines would you expect if: (i) all cobalts are equivalent; (ii) only two are equivalent; (iii) all three are non-equivalent. The sample is diluted in diamagnetic FeCo₂(CO)₉Se, and you do not need to give the intensity ratio.