Chem 341
 Inorganic Chemistry
 Midterm Exam \#2, Fall 2000

NAME:

- Calculators and model sets are the only aids allowed for this exam. Periodic and character tables are provided at the end of the exam (feel free to separate and keep in front of you).
- Partial marks will be rewarded where applicable, so be sure to show all your work and explain your answers.
- There are four questions, worth $24,19,20$ and 17 marks, respectively, for a maximum possible score of 80 . Spend an appropriate amount of time on each question.
- Duration: 60 minutes.

Some potentially useful constants:

$$
\begin{array}{ll}
\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} & e=1.602 \times 10^{-19} \mathrm{C} \\
\mathrm{~F}=e \cdot \mathrm{~N}_{\mathrm{A}}=9.649 \times 10^{4} \mathrm{C} \cdot \mathrm{~mol}^{-1} & \mathrm{~m}_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg} \\
\mathrm{~m}_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg} & \mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K} \\
\pi \simeq 3.1416 & \mathrm{e}=\text { the natural number } \simeq 2.718 \\
\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=8.314 \mathrm{~V} \cdot \mathrm{C} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}
\end{array}
$$

1. Give the point groups of the following (you don't need to list the symmetry elements, you can just give the point group). [3 marks each, 24 total]
(a) Diborane, $\mathrm{Bi}_{2} \mathrm{H}_{6}$

(c) $\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, staggered rings

(e) A cube with a line (of equal length) on each face, as shown below:

(g) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$, where the two lone pairs of the N's are staggered wrto the z -axis. Give the geometry wrto each N .

(2) The vibrational symmetries of the inorganic compound phosphoryl chloride, POCl_{3}, are $\Gamma_{\mathrm{Vib}}=3 \mathrm{~A}_{1}+3 \mathrm{E}$. [19 marks total for this question]
(a) What is the point group, and how many peaks would you expect in the IR spectrum and the Raman spectrum, for this compound? [8 marks]
(b) Which of the above $\Gamma_{\text {vib }}$ vibrations involve change in bond lengths, $\Gamma_{\text {stretch }}$, and change in bond angles, $\Gamma_{\text {deformation }}$? [7 marks]
(c) One of the $\Gamma_{\text {stretch }}$ vibrations involves only the $\mathrm{P}-\mathrm{Cl}$ bond. What is the wavenumber of this IR absorption, in cm^{-1}, if the force constant of the bond is $296 \mathrm{~kg} \cdot \mathrm{~s}^{-2}$ and the effective mass is $2.75 \times 10^{-26} \mathrm{~kg}$? [4 marks]
(3) [20 marks total for this question] Given the following two reduction reactions:

$$
\begin{array}{ll}
\mathrm{FeCO}_{3(\mathrm{~s})}+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Fe}_{(\mathrm{s})}+\mathrm{CO}_{3}^{2-}{ }_{\text {(aq) }} & \mathrm{E}^{\circ}=-0.756 \mathrm{~V} \\
\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Fe}_{(\mathrm{s})} & \mathrm{E}^{\circ}=+0.400 \mathrm{~V}
\end{array}
$$

(a) In which direction is each of the above equilibria, as written, favoured? [2 marks]
(b) Write the two half-reactions for the dissolution of solid ferrous carbonate, and identify the redox couples, oxidizing agent and reducing agent involved in the redox reaction. [6 marks]
(c) What is the solubility product, K_{sp}, for the dissolution of ferrous carbonate? [8 marks]
(d) What is the standard change in free energy, $\Delta \mathrm{G}^{\circ}$, for the dissolution of ferrous carbonate? [4 marks]
(4) Acids and Bases. [17 total marks for this question]
(a) Predict whether the K_{eq} for the following reaction will be greater than or less than unity, and state your reason(s): [3 marks]

$$
\mathrm{CdI}_{2(\mathrm{~s})}+\mathrm{CaF}_{2(\mathrm{~s})} \Leftrightarrow \mathrm{CdF}_{2(\mathrm{~s})}+\mathrm{CaI}_{2(\mathrm{~s})}
$$

(b) For aqua acids with a heavy, p-block metal centre, such as Pb^{2+}, what happens to pK_{a}, as compared to that predicted by the ionic (electrostatic) model, and why? [4 marks]
(c) Give two reasons why phosphoric acid is weaker than sulfuric acid. Using Pauling's Rules, give the acid constants for phosphoric acid. [6 marks]
(d) For a given solvent, what is the pK_{a} range that is useful for studying a given acid or base? In words, what is the explanation for this phenomenon? [4 marks]

1. Give the point groups of the following (you don't need to list the symmetry elements, you can just give the point group). [3 marks each, 24 total]
(a) Diborane, $\mathrm{Bi}_{2} \mathrm{H}_{6}$

$\begin{array}{ll}D_{2 h} h & D_{3 h}=1 \text { mark } \\ C_{2 v}=1 \text { mark } \quad C_{2 h}=1 / 2 \text { marks }\end{array}$
(c) $\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, staggered rings

(f) The cube in part e, but with the cube with a line (of equal length) lines rotated clockwise (wrto the outside of the cube) by $45^{\circ}:\left.D_{4}\right|_{\text {mars }}=\phi_{s}$

(g) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$, where the two tone pairs of the N's are staggered wrto the z -axis.
Give the geometry wrto each N .

marts

(h) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$, gauche conformation m_{2} = 1 mark
(2) The vibrational symmetries of the inorganic compound phosphoryl chloride, POCl_{3}, are $\Gamma_{\mathrm{Vib}}=3 \mathrm{~A}_{1}+3 \mathrm{E}$. [19 marks total for this question]
(a) What is the point group, and how many peaks would you expect in the IR spectrum and the Ramen spectrum, for this compound? [8 marks]

(3) [20 marks total for this question] Given the following two reduction reactions:

$$
\begin{array}{ll}
\mathrm{FeCO}_{3(\mathrm{~s})}+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Fe}_{(\mathrm{s})}+\mathrm{CO}_{3}^{2-}{ }_{\text {(aq) }} & \mathrm{E}^{\circ}=-0.756 \mathrm{~V} \tag{1}\\
\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \Leftrightarrow \mathrm{Fe}_{(\mathrm{s})} & \text { Harris } \\
\mathrm{E}^{0}=+0.400 \mathrm{~V} \\
321 & \text { wrong. }
\end{array}
$$

$[2]-0,400 \mathrm{~V}$
(a) In which direction is each of the above equilibria, as written, favoured?
(1) $[1]$ marks to the left
(1) $[2]$ to the rift t
(b) Write the two half-reactions for the dissolynion of solid ferrous

The in int ac sa! t 6 trial exams? carbonate, and identify the redox couples, oxidizing agent and reducing

$$
\begin{array}{ll}
\mathrm{Fe} \operatorname{cog}(s)+2 e^{-} & \mathrm{Fe}(s)+\mathrm{CO}_{3}^{2-}(q) \\
& \mathrm{Fe}^{2}()+2 e^{-}
\end{array}
$$

$$
E^{0}=-0.756
$$

reducing agent (1)

$$
\text { "A number } \ldots+8 \text { for evan? }
$$ carbonate? [8 marks]

$\Delta 6^{0}=-R_{1} T_{1 \times 2 \times k}$

$$
\begin{aligned}
& \text { What is the solubility product, } \mathrm{K}_{\text {sp }} \text {, for the dissolution of ferrous } \\
& \text { carbonate? [8 marks] } \\
& \text { (2) } \mathrm{Fe}\left(\mathrm{O}_{3}(5) \rightleftharpoons \mathrm{Fe}^{2}+\text { (aq) }\right)+\mathrm{CO}_{3}^{2-} \text { cal), }
\end{aligned}
$$

$$
\Delta G^{0}=-n F E^{0}=-R t \ln K \quad K=\left(n F E^{0}\right) \quad\left(\frac{\Delta G}{\operatorname{ex}}\right) \quad E=0=E^{0}-\frac{R T}{n t} \ln
$$

(3) $K=\exp \left(\frac{n F E^{0}}{R T}\right)$
(1)
(1) $\left(9.649 \times 10^{4}\right.$ chimp $\left.^{27}\right)(-1.156 \mathrm{~V})$
$\left(8.314\right.$ y. $\mathrm{k}^{\left.\mathrm{k} / \mathrm{m}_{\mathrm{m}} \mathrm{k}^{-1}\right)(298 \mathrm{k})}=\exp (-89.575)$

$$
=\exp \frac{(2)\left(9.649 \times 10^{4} \operatorname{cimpl}^{-1}\right)(-1.156 \mathrm{~V})}{\left(8.314 \times 19 . \mathrm{km}^{-1}\right)(298 \mathrm{k})}=\exp (-89.575)
$$

(d) What is the standard change in free energy, $\Delta \mathrm{G}^{\circ}$, for the dissolution of ferrous carbonate? [4 marks]

$$
\Delta G=
$$

$$
\Delta G^{\circ} \Delta G^{0} \neq R d \ln Q
$$

(I mark)
(4) Acids and Bases. [17 total marks for this question]
(a) Predict whether the $\mathrm{K}_{\text {eq }}$ for the following reaction will be greater than or less than unity, and state your reasons): [3 marks]

$$
\mathrm{CdI}_{2(s)}+\mathrm{CaF}_{2(\mathrm{~s})} \Leftrightarrow \mathrm{CdF}_{2(\mathrm{~s})}+\mathrm{CaI}_{2(s)}
$$

(1) less than unity,
(1) Since sol ' (d acid proper sit
(1) \& had Ca^{2+n}. hard F^{-}bane.
or bog en diff fy. Cat F
(b) For aqua acids with a heavy, p -block metal centre, such as Pb^{2+}, what happens to pK_{a}, as compared to that predicted by the ionic (electrostatic) model, and why? to pK_{a}, as
[4 marks]
 dr (1) Pberge sofar, more caulent rede H^{+}, $\uparrow \mathrm{Ka}$,

$$
V p^{k a}(1)
$$

(c) Give two reasons why phosphoric acid is weaker than sulfuric acid. Using Pauling's Rules, give the acid constants for phosphoric acid [6 marks]

(d) For a given solvent, what is the pK_{a} range that is useful for studying a given,
acid or base? In words, what is the explanation for this phenomenon? [4 marks]
$-\infty \leq p k_{a} \leq p^{K}$ soft (2) so base ph e fen ter
$0 \leq p k a \leq p_{k}^{k}$ soft (2) got ladled (1)
Acids Stranger than Sol th get erellen
Bases Stranger then Sol-
or than P.
or

