Chem 341
 Inorganic Chemistry
 Final Exam, Fall 2000

NAME:

- Calculators and model sets are the only aids allowed for this exam.

Character tables and a periodic table are provided at the end of the exam (feel free to separate and keep in front of you).

- Partial marks will be rewarded where applicable, so be sure to show all your work and explain your answers.
- Choose six of the following nine questions. Each question is worth 18 marks, and there is a bonus question worth 6 marks, for a maximum possible score of 114 (but the exam will be out of 108). Distribute your time accordingly.
- Duration: 2 hours.
- Check the boxes below to indicate the questions you want graded.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Mark									

Some potentially useful constants:

$$
\begin{array}{ll}
\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} & e=1.602 \times 10^{-19} \mathrm{C} \\
\mathrm{~F}=e \cdot \mathrm{~N}_{\mathrm{A}}=9.649 \times 10^{4} \mathrm{C} \cdot \mathrm{~mol}^{-1} & \mathrm{~m}_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg} \\
\mathrm{~m}_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg} & \mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K} \\
\pi \simeq 3.1416 & \mathrm{e}=\text { the natural number } \simeq 2.718 \\
\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=8.314 \mathrm{~V} \cdot \mathrm{C} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}
\end{array}
$$

1. Give the point groups of the following (note: the point group is not necessarily in the given character tables) [3 marks each]:
(a) 8-sided Patio Umbrella (note:
(b) $\left[\mathrm{ZrF}_{7}\right]^{3-}$, pentagonal bipyramidal there is no hook on the end of a patio umbrella; the top view is shown on the right)

(c) cis- $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$, square planar

(e) Camaro Z-28 (exterior only)

(f) Camaro Z-28 (exterior only) with a flat tire

2. The molecule with simple formula $\mathrm{N}_{2} \mathrm{~F}_{2}$ has several isomers; two of these isomers have central nitrogens, with a terminal fluorine on each nitrogen.
(a) For the cis isomer [3 marks each part, 9 marks total]:
(i) Show the Lewis Dot Diagram (include formal charges, if any)
(iii) How many IR bands and Raman bands would you expect if $\Gamma_{\text {vib }}=3 \mathrm{~A}_{1}+\mathrm{A}_{2}+$ $2 \mathrm{~B}_{2}$?
(b) For the trans isomer [3 marks each part, 9 marks total]:
(i) Show the Lewis Dot Diagram
(ii) What is the point group? (include formal charges, if any)
(iii) How many IR bands and Raman bands would you expect if $\Gamma_{\text {vib }}=3 \mathrm{~A}_{\mathrm{g}}+\mathrm{A}_{\mathrm{u}}+$ $4 \mathrm{~B}_{\mathrm{u}}$?
3. (a) Wilkinson's and Zeigler-Natta are two catalysts that involve the conversion of $\mathrm{C}=\mathrm{C}$ bonds to $\mathrm{C}-\mathrm{C}$ bonds. Describe, as fully as possible, the catalytic cycle for one of these industrially important complexes, indicating all steps involved. [9 marks]
(b) Sketch an approximate, but representative, reaction profile (free energy versus reaction coordinate) for an uncatalyzed and catalyzed reaction, if the ratedetermining step of the reaction involves [3 marks each, 9 total]:
(i) Association
(ii) Dissociation
(iii) Interchange
4. (a) Define and give one example of isolobality. [3 marks]
(b) Using Wade's Rules, predict the structures of the following clusters [3 marks each, 15 total]:
(i) $\mathrm{C}_{4} \mathrm{~B}_{4} \mathrm{H}_{8}$
(ii) $\mathrm{C}_{4} \mathrm{BH}_{5} \mathrm{Fe}(\mathrm{CO})_{3}$
(iii) $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$
(iv) $\mathrm{Fe}_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{12}$
(v) $\mathrm{B}_{3} \mathrm{H}_{9}$
5. (a) Give the stoichiometric formulae of the following solids [3 marks each, 9 total]:

(i) The fluorite	(ii) The antifluorite	(iii) The body-centered		
structure of calcium	form of potassium	cubic structure of cesium chloride, where		
fluoride, which	selenide, where a ccp	censists of a ccp lattice		lattice of anions has all
:---				
cons				
of cations, with anions				
of its tetrahedral sites	\quad	Cl^{-}simple cubic lattice a		
:---				
in all of the tetrahedral				
occupied by cations.		and Cs^{+}occupies the		
:---				
centres of the unit				
cells.				

(b) Titanium disulfide is a layered material, where sulfurs define an hcp lattice. The titaniums occupy all the octahedral holes of alternate layers of the hcp lattice (see figure, right). What is intercalation, and what is the main reason that titanium disulfide may be used as a lithium battery via intercalation? [2 marks]

(c) Describe the process of doping an insulator to make render it semiconducting. Give an example, using band diagrams. [7 marks]
6. (a) For each of the following pairs of acids, circle the stronger acid. [3 marks]
(i) $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ or $\left[\mathrm{Nb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(ii) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ or $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{H}_{2} \mathrm{CO}_{3}$
(b) Write the equilibrium for the one of the above aqua-acids in water. [3 marks]
(c) The following redox reaction between two coordination complexes occurs via an outer sphere mechanism:

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}+\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \Leftrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{+}+\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}
$$

(i) What can be said about the mechanism, reactants and the rate of electron transfer in this reaction? [3 marks]
(ii) Give the name of either the reactants or products for the above redox reaction. [2 marks]
(iii) Give the mechanistic details if the redox reaction occurred instead via an inner sphere mechanism. [3 marks]
(d) What is disproportionation and comproportionation of the oxidation state of a metal? Why does this phenomenon occur, and use Frost Diagrams in your answer. [4 marks]
7. Using ligand field theory and the MO diagrams for octahedral complexes given below, account for the order of the spectrochemical series, with respect to each of the three types of ligands. Describe the chemistry involved in the metal-ligand interaction for each type. Give two examples of each type of ligand, and indicate which of the two will give the larger LFSE value. [15 marks]
σ-donor π-donor π-acceptor
(b) Why is ligand field theory a better account of the properties of transition metal complexes, as compared to that predicted by crystal field theory? [3 marks]
8. (a) Account for the fact that boron trifluoride is monomeric, whereas boron trihydride can, and prefers to, dimerize. [3 marks]
(b) Predict the geometries of the following molecules using VSEPR theory [3 marks each, 9 total]:
(i) XeF_{6}
(ii) ClF_{3}
(iii) $\mathrm{H}_{3} \mathrm{NO}$ (note: this is not HNO_{3} !)
(c) Give the MO diagram for $\mathrm{N}_{2}{ }^{2+}$ and $\mathrm{O}_{2}{ }^{2+}$; fill in the electrons, and indicate the magnetic properties, HOMO, LUMO and bond order for each molecule. [6 marks]
9. (a) Briefly discuss the formulae and structures of the mononuclear and binuclear carbonyl complexes of the first row transition metals. [9 marks]
(b) Carbon rings with extended pi systems are common ligands in inorganic chemistry. Give three examples of complexes that contain this type of ligand, and include the electron count of the complex. [6 marks]
(c) Explain why $\mathrm{Cr}(\mathrm{CO})_{6}$ is stable, while $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}$ is not. [3 marks]

Bonus Question [6 marks]

B1. How many g-orbitals are there for a given quantum number? [1 mark]

B2. Give the set of quantum number for each of the 5 g orbitals. [3 marks]

B3. For each of the 5 g -orbitals below, how many radial nodes and angular nodes are there? [2 marks]

Chem 341
 Inorganic Chemistry
 Final Exam, Fall 2000

NAME:

- Calculators and model sets are the only aids allowed for this exam. Character tables and a periodic table are provided at the end of the exam (feel free to separate and keep in front of you).
- Partial marks will be rewarded where applicable, so be sure to show all your work and explain your answers.
- Choose six of the following nine questions. Each question is worth 18 marks, and there is a bonus question worth 6 marks, for a maximum possible score of 114 (but the exam will be out of 108). Distribute your time accordingly.
- Duration: 2 hours.

not so

Some potentially useful constants:

$$
\begin{array}{ll}
\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\mathrm{~N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} & \mathrm{e}=1.602 \times 10^{-19} \mathrm{C} \\
\mathrm{~F}=e \cdot \mathrm{~N}_{\mathrm{A}}=9.649 \times 10^{4} \mathrm{C}_{\mathrm{mol}} \\
\mathrm{~m}_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg} & \mathrm{~m}_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg} \\
\pi \simeq 3.1416 & \mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}=8.314 \mathrm{~V} \cdot \mathrm{C} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}
\end{array}
$$

1. Give the point groups of the following (note: the point group is not necessarily in the given character tables) [3 marks each]:
(a) 8-sided Patio Umbrella (note: there is no hook on the end of a patio umbrella; the top view is shown on the right)

(c) cis-Pt(NH3)2 Cl_{2}, square plant

(e) Camaro 2-28 (exterior only)

(b) $\left[\mathrm{ZrH}_{7}\right]^{3-}$, pentagonal bipyramidal

(d) transePt($\left.\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$, square planar

(1) Camaro Z-28 (exterior only) with a flat tire

$$
10+14=24 e^{-}
$$

2. The molecule with simple formula $\mathrm{N}_{2} \mathrm{~F}_{2}$ has several isomers; two of these isomers have central nitrogens, with a terminal fluorine on each nitrogen.
(a) For the cis isomer [3 marks each part, 9 marks total]:
(i) Show the Lewis Dot Diagram (include formal charges, if any)

(ii) What is the point group?

(iii) How many IR bands and Raman bands would you expect if $\Gamma_{\text {vi }}=3 A_{1}+A_{2}+$ $2 \mathrm{~B}_{2}$?

(b) For the trans isomer [3 marks each part, 9 marks total]:
(i) Show the Lewis Dot Diagram (include formal charges, if any)

(iii) How many IR bands and Raman bands would you expect if $\Gamma_{\text {vi }}=3 \mathrm{Ag}_{g}+\mathrm{A}_{\mathrm{g}}+$ Should $4 \mathrm{~B}_{\mathrm{u}}$?
be 2

3. (a) Wilkinson's and Zeigler-Natta are two catalysts that involve the conversion of $\mathrm{C}=\mathrm{C}$ bonds to $\mathrm{C}-\mathrm{C}$ bonds. Describe, as fully as possible, the catalytic cycle for one of these industrially important complexes, indicating all steps involved. [9
 marks]

(b) Sketch an approximate, but representative, reaction profile (free energy versus reaction coordinate) for an uncatalyzed and catalyzed reaction, if the ratedetermining step of the reaction involves [3 marks each, 9 total]:

(ii) Dissociation

4. (a) Define and give one example of isolobality. [3 marks]

The and give one example of isolocality, [3 marks]

2) (1) 1

(b) Using Wade's Rules, predict the structures of the following clusters $[3$ marks each, 15 totall:
(i) $\mathrm{C}_{4} \mathrm{~B}_{4} \mathrm{H}_{8}$

$$
\begin{aligned}
& \text { (1) } \mathrm{C}_{4} \mathrm{~B}_{4} \mathrm{H}_{8} \\
& 16+12-8
\end{aligned} 0^{-}
$$

Lopairg, $n+2$
Unido based on q-vatex polighedron WI se vertex missing
(iii) $\mathrm{Rh}_{4}(\mathrm{CO})_{12}$

$$
n=4
$$

$$
36+24-48=12 e^{-}
$$

6 pairs,$n+2$
nide, TB e missing one vertex
$n=6$
(ii) $\mathrm{C}_{4} \mathrm{BH}_{5} \mathrm{Fe}(\mathrm{CO})_{3}$

$$
16+3-5+8+6-12=16 e^{r}
$$

8 pairs, $n+2$ pairs nide, PBP (7-vertex polyhedron) missing one vertex
(iv) $\mathrm{Fe}_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{12}$

$$
\begin{gathered}
n=4 \\
16+18+24-48=10 e^{-}
\end{gathered}
$$

5 pains, $n+1$
close, eser-tetradral
(v) $\mathrm{B}_{3} \mathrm{H}_{0}$
$N=3$

$$
9-3+6=12 e^{-}
$$

6 pains, $n+3$
arackno, twP missing two
5. (a) Give the stoichiometric formulae of the following solids 13 marks each, 9 totall:

5

(i) The fluorite structure of calcium fluoride, which consists of a cop lattice of cations, with anions in all of the tetrahedral interstitial sites.

(ii) The antifluorite form of potassium selenide, where a cop lattice of anions has all of its tetrahedral sites occupied by cations.

(iii) The body-centered cubic structure of cesium chloride, where Cl anions define a simple cubic lattice and Cs^{+}occupies the centres of the unit cells.

\qquad

\qquad 1×-1

\qquad

(b) Titanium disulfide is a layered material, where sulfurs define an hop lattice. The titaniums occupy all the octahedral holes of alternate layers of the hop lattice (see figure, right). What is intercalation, and what is the main reason that titanium disulfide may be used as a lithium battery yea intercalation? [2 marks]

sulfur lagers
(c) Describe the process of doping an insulator to make render it semiconducting.

Give an example fusing bad diagrams [7 marks].

6. (a) For each of the following pairs of acids, circle the stronger acid. [3 m
(i) $\left.\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right)$
or $\left[\mathrm{Nb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}\right.$
(ii)

$$
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}} \\
& \text { or }\left(\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+1}
\end{aligned}
$$

(iii)

$$
\xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{H}_{2} \mathrm{CO}_{3}}
$$

(b) Write the equilibrium for the one of the above aqua-acids in water. [3 mar

(c) The following redo reaction between two coordination complexes occurs vi an outer sphere mechanism:

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}+\left[\mathrm{Ru}^{2}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \Leftrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{+}+\left[\mathrm{RuMH}_{3}\right)\right)^{2} 3+\right.
$$

(i) What can be said about the mechanism, reactants and the rate of electron transfer in this reaction? [3 marks]

- Coordt do not
frodo

) Give the name of either the reactants or products for the above redox reaction. marks]
pentarmmine chlorocobalt (II)

A
III)
hexaammine ruthenium (I)

Give the mechanistic details if the redox reaction occurred instead via an inner are mechanism. [3 marks]
"

- Cord \#to change
- Slower es transfer

M- LCM
hat is disproportionation and comproportionation of the oxidation state of a Why does this phenomenon occur, and use Frost Diagrams in your answer. cs]

7. Using ligand field theory and the MO diagrams for octahedral complexes given below, account for the order of the spectrochemical series, with respect to each of the three types of ligands. Describe the chemistry involved in the metal-ligand interaction for each type. Give two examples of each type of ligand, and indicate which of the two will give the larger LFSE value. [15 marks]

(b) Why is ligand field theory a better account of the properties of transition metal complexes, as compared to that predicted by crystal field theory? [3 marks]

$$
\begin{aligned}
& \text { Lis nd point tee cheese } \\
& \text { These ito accounts marital orethep } \\
& \text { (Better meawere of } \Delta \text {.) }
\end{aligned}
$$

8. (a) Account for the fact that boron trifluoride is monomeric, whereas boron trihydride can, and prefers to, dimerize. [3 marks]

$$
\begin{aligned}
& \text { Cont t } \\
& \text { scour f/ Bf }
\end{aligned}
$$

(b) Predict the geometries of the following molecules using VSEPR theory [3 marks each, 9 totall:
(i) XeF_{6}
(ii) ClF_{3}
(iii) $\mathrm{H}_{3} \mathrm{NO}$ (note: this is not HNO_{3} !)
$8+(7 \times 6)=5 e^{-}$
$28 e^{-}$

$$
3+5+6=14 e^{-}
$$

vertex
(c) Give the MO diagram for $\mathrm{N}_{2}{ }^{2+}$ and $\mathrm{O}_{2}{ }^{2+}$; fill in the electrons, and indicate the magnetic properties, HOMO, LUMO and bond order for each molecule. [6 marks]

- diamagnetic C

9. (a) Briefly discuss the formulae and structures of the mononuclear and binuclear carbonyl complexes of the first row transition metals. [9 marks]

$$
\begin{aligned}
& \begin{array}{l}
\text { Vico) } \operatorname{Cr}(10) 6 \\
\text { De } 18 e^{-} \\
1)(2)
\end{array} \\
& (0 c) M n-M n(0)_{5} \\
& \text { 18e-each } \\
& ((O C) M n-R)
\end{aligned}
$$

(b) Carbon rings with extended pi systems are common ligands in inorganic chemistry. Give three examples of complexes that contain this type of ligand, and include the electron count of the complex. [6 marks]

(c) Explain why $\mathrm{Cr}(\mathrm{CO})_{6}$ is stable, while $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}$ is not. [3 marks] $4 s^{2} 3 d^{4}$ Trudonar Crabready

Bonus Question [6 marks]

B1. How many g-orbitals are there for a given quantum number? [1 mark]

B2. Give the set of quantum number for each of the 5 g orbitals. [3 marks]

-
-3

B3. For each of theg-orbitals below, how many radial nodes and angular nodes are there? [2 marks]

